

Cathay August 2025

www.cathayradio.org

President North: Leonard Tom, NX6E email: nx6e@sonic.net Vice President South: Bill Fong, W6BBA - email: w6bba@arrl.net

Secretary/Membership: Rodney Yee, KJ6DZI - email: rodyee2000@yahoo.com

Editor: Rodney Yee, *KJ6DZI -* **email:**<u>rodyee2000@yahoo.com</u> **Treasurer:** Rodney Yee, *KJ6DZI -* **email:**<u>rodyee2000@yahoo.com</u>

Web Master: Edison Fong – WB6/QN - email:edison_fong@hotmail.com

Mission: The Cathay Amateur Radio Club is basically an active social club of Ham Radio Operators and their spouses. We support local community requests for HAM emergency communications. Several of us are trained in CPR/ First Aid and are involved with community disaster preparedness.

Monday Night Net Time: 9 PM Local Time/PST, As of 8/21/2023 we are switching over from using Repeater: WB6TCS to Nick Cassarino's Repeater: WA6GEL UHF 444.800 Mhz, Offset +5 Mhz, CTCCS/Tone PL 179.9 Hz on Monument Peak, Milpitas. If you are in the North Bay, one can use the WA6GEL repeater North Bay located on Mt. San Bruno - 444.8 MHz offset +5 Mhz, CTCCS/Tone PL173.3 Hz

The CARC Monday night net is the best way to find out the latest club news. All checkin are welcome.

Message on Behalf of the President: Leonard Tom, NX6E

Hello CARC Members and Friends;

Many thanks to both Nick Cassarino for the use of repeater – WA6GEL for our CARC Monday Night Net.

Additional folks are needed to help out with conducting the CARC radio net on Monday nights. Please contact Ed Fong (edison_fong@hotmail.com) if you are interested.

I wish to thank our CARC members that set aside their valuable time to participate in our Monday night's nets.

Introduction to Tech Section:

The **Vera C. Rubin Observatory**, formerly the **Large Synoptic Survey Telescope** (**LSST**), have recently completed and come online.

For more details, see the Tech Section of this newsletter.

CARC Final News Wrap Up

Chat sub s'em to all you CARC members! - Leonard Tom, NX6E

Public Service Announcements

HAM CRAM / HAM Licensing

For upcoming HAM Licensing locations please refer to: http://www.arrl.org/find-an-amateur-radio-license-exam-session

Auxiliary Communications Service (ACS)

The Auxiliary Communications Service (ACS) is a unit of trained professionals who supply communications support to the agencies of the City and County of San Francisco, particularly during major events/incidents. ACS goals are the support of gathering and distribution of information necessary to respond to and recover from a disaster.

The ACS Net begins at 1930 hours (7:30 p.m. PT) local time each Thursday evening, on the WA6GG repeater at 442.050 MHz, positive offset, tone 127.3 Hz. The purpose of this net is to practice Net Control skills, practice checking in with deployment status in a formal net, and to share information regarding upcoming ACS events. Guests are welcome to check in. ACS members perform Net Control duty on a regular basis. On the second Thursday of each month, the net is conducted in simplex mode on the output frequency of the WA6GG repeater, 442.050 MHz no offset, tone 127.3 Hz.

ACS holds its General Meetings on the third Tuesday of each month from 1900 hours to 2100 hours local time. Currently meetings are exclusively conducted over Zoom during the COVID-19 pandemic, ACS looks forward to meeting in person again as soon as possible.

Upcoming meeting dates in 2025 are:

August 19, 2025

• September 17, 2025

Location of in person future ACS meetings are yet to be determined as the regular location is under reconstruction. All interested persons are welcome to attend. For further information contact Corey Siegel KJ6LDJ <kj6ldj@gmail.com>.

For more information, please attend an ACS meeting, check in on the ACS radio net, or call 415-558-2717.

Free Disaster Preparedness Classes In San Francisco – NERT Taught by San Francisco Fire Department (SFFD).

https://sf-fire.org/nert/nert-calendar-meetings-trainings-events

Training Classes: see above website. TBD

+ Recertifications

TBD

*SFFD DOT is the Fire Department Division of Training. All participants walking, biking or driving enter through the driveway gate on 19th St. between Folsom and Shotwell. Parking is allowed along the back toward the cinderblock wall.

Visit www.sfgov.org/sffdnert to learn more about the training, other locations, and register on line. Upcoming Special NERT Events.

San Francisco Police Department: Auxiliary Law Enforcement Response Team (ALERT)

The Auxiliary Law Enforcement Response Team (ALERT) is a citizen disaster preparedness program designed. The ALERT program is for volunteers 16 years of age or older, who live, work, or attend high school in San Francisco.

Graduates of the San Francisco Police Activities League (P.A.L) Law Enforcement Cadet Academy are also eligible to join.

ALERT volunteers will no longer need to complete the Fire Department's Neighborhood Emergency Response Team (NERT) (www.sfgov.org/sfnert) training and then graduate into two 8 hour Police Department course specifically designed for ALERT team members.

ALERT members will work closely with full-time and/or Reserve Police Officers in the event they are deployed after a disaster. The Basic ALERT volunteer will have no law enforcement powers other than those available to all citizens.

SFPD ALERT Training (New Members)

The next SFPD ALERT training class has been scheduled for: TBD

*Class date indicated are only for new members

IMPORTANT- All participants must complete the background interview process in order to be eligible to attend the ALERT training class.

Eligible ALERT participants may register for training class by contacting the ALERT Program Coordinator, marina.chacon@sfgov.org, or by telephone at 415-401-4615.

SFPD ALERT Practice/Training Drill

All active/trained ALERT members are asked to join us for our next training drill, via scheduled for on TBD

For more information on the San Francisco Police Department ALERT Program, email us at sfpdalert@sfgov.org, or call Lt. Marina Chacon (SFPD Ret.), SFPD ALERT Program Coordinator, at (415) 401-4615.

For additional information on the web please refer to: https://sfgov.org/policecommission/alert

Tech Article

https://en.wikipedia.org/wiki/Vera_C._Rubin_Observatory

The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), is an astronomical observatory in Coquimbo Region, Chile. Its main task is to conduct an astronomical survey of the southern sky every few nights, creating a ten-year time-lapse record, termed the Legacy Survey of Space and Time (also abbreviated LSST). [2][3][4]

The observatory is located on the El Peñón peak of Cerro Pachón, a 2,682-meter-high (8,799 ft)

mountain in northern Chile, alongside the existing <u>Gemini South</u> and <u>Southern</u> Astrophysical Research Telescopes.^[5] The base facility is located about 100 kilometres (62 miles) away from the observatory by road, in <u>La Serena</u>.

The observatory is named for Vera Rubin, an American astronomer who pioneered discoveries about galactic rotation rates. It is a joint initiative of the U.S. National Science Foundation (NSF) and the U.S. Department of Energy's (DOE) Office of Science and is operated jointly by NSF NOIRLab and SLAC National Accelerator Laboratory. [6]

The Rubin Observatory houses the Simonyi Survey Telescope, a wide-field reflecting telescope with an 8.4-meter primary mirror. The telescope uses a variant of three-mirror anastigmat, which allows the telescope to deliver sharp images over a 3.5-degree-diameter field of view. Images are recorded by a 3.2-gigapixel charge-coupled device imaging (CCD) camera, the largest camera yet constructed. [8]

The Rubin Observatory was proposed in 2001 as the LSST. Construction of the mirror began (with private funds) in 2007. The LSST then became the top-ranked large ground-based project in the 2010 Astrophysics Decadal Survey, and officially began construction on 1 August 2014.^[9] Funding came from the NSF, DOE, and private funding raised by the private LSST Discovery Alliance.^[10] Operations are managed by the Association of Universities for Research in Astronomy (AURA).^[11] Construction cost was expected to be about \$680 million.^[12]

Site construction began in April 2015.^{[13][14]} The first pixel with the engineering camera came in October 2024,^[15] while system first light images were released 23 June 2025. Full survey operations were planned to begin later in 2025, delayed by COVID-related issues.^[16]

Rubin is expected to catalog more than five million asteroids (including ~100,000 <u>near-Earth objects</u>), and image approximately 20 billion galaxies, 17 billion stars, and six million small Solar System bodies.^[17]

Name

Vera C. Rubin Observatory and the Milky Way Galaxy

The telescope was originally named the Large Synoptic Survey Telescope, where the word *synoptic*—derived from the Greek words σύν (syn 'together') and ὄψις (opsis 'view')—describes observations that give a broad view of a subject.^[18] In June 2019, the observatory was renamed the Vera C. Rubin Observatory was initiated by United States Representative Eddie Bernice Johnson and Resident Commissioner of Puerto Rico Jenniffer González-Colón.^[19] The renaming was enacted as United States law on 20 December 2019,^[20] and announced at the 2020 American Astronomical Society winter meeting.^[3] The name honors Rubin and her colleagues' probes of the nature of dark matter by mapping and cataloging billions of galaxies through space and time.^[19]

The telescope itself is named the Simonyi Survey Telescope, [21] in recognition of private donors Charles and Lisa Simonyi. [22][23]

The LSST acronym was repurposed to refer to the survey that the observatory will perform as the "Legacy Survey of Space and Time", with the camera as the "LSST Camera" [24]

History

The Rubin Observatory is the successor to a tradition of sky surveys.^[25] These started as visually-compiled catalogs in the 18th century, such as the Messier catalog. This was replaced by photographic surveys, starting with the 1885 Harvard Plate Collection, the National Geographic Society – Palomar Observatory Sky Survey, and others. By about 2000, the first digital surveys, such as the Sloan Digital Sky Survey (SDSS), began to replace the earlier photographic plate surveys.

The Rubin Observatory evolved from the *Dark Matter Telescope*, [26] mentioned as early as 1996. The fifth decadal report, *Astronomy and Astrophysics in the New Millennium*, was released in 2001, and recommended the "Large-Aperture Synoptic Survey Telescope" as a major initiative. Even at this early stage the basic design and objectives were set: [28]

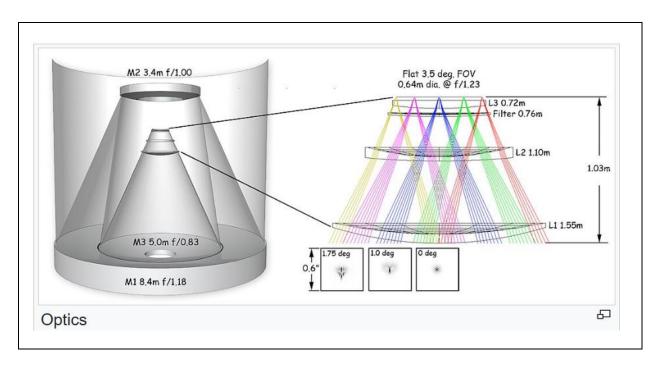
The Large-aperture Synoptic Survey Telescope (LSST) is a 6.5-m-class optical telescope designed to survey the visible sky every week down to a much fainter level than that reached by existing surveys. It will catalog 90 percent of the near-Earth objects larger than 300 m and assess the threat they pose to life on Earth. It will find some 10,000 primitive objects in the Kuiper Belt, which contains a fossil record of the formation of the solar system. It will also contribute to the study of the structure of the universe by observing thousands of supernovae, both nearby and at large redshift, and by measuring the distribution of dark matter through gravitational lensing. All the data will be available through the National Virtual Observatory, providing access for astronomers and the public to very deep images of the changing night sky.^[28]

Early development was funded by small grants, with major contributions in January 2008 by software billionaires Charles and Lisa Simonyi and Bill Gates, of \$20 million and \$10 million, respectively. [29][22] \$7.5 million was included in the U.S. President's FY2013 NSF budget request. [30] DOE funded the digital camera component built by the SLAC National Accelerator Laboratory, as part of its mission to understand dark energy. [31]

NSF funding for the rest of construction was authorized on 1 August 2014.^[9] The lead organizations are:^[31]

- The SLAC National Accelerator Laboratory to design and construct the LSST camera
- The <u>National Optical Astronomy Observatory</u> to provide the telescope and site team
- The National Center for Supercomputing Applications to construct and test the archive and data access center
- The Association of Universities for Research in Astronomy to oversee construction

In May 2018, the United States appropriated more funding for the telescope than had been requested, to speed construction and operation. Telescope management was unsure this would help, since at that stage of construction they were not cash-limited.^[12]


First released image: the Trifid and Lagoon nebulae[32]

The first photons resolved by the complete instrument were detected on 15 April 2025, appearing as rings before the instrument was adjusted to focus them as dots. [32] Images from the first light of the full telescope and camera combination were released on 23 June 2025. [33][34][35] The first teasers were a composite image of the Trifid and Lagoon nebulae and extracts from a wide-field view of galaxies in the Virgo Cluster. [36] The image of the Virgo Cluster was taken in early May over four nights. The early images showed over 2,000 new asteroids. [37] Watch parties for the release were held across six continents as people from 28 countries had been involved. [38]

Simonyi Survey Telescope

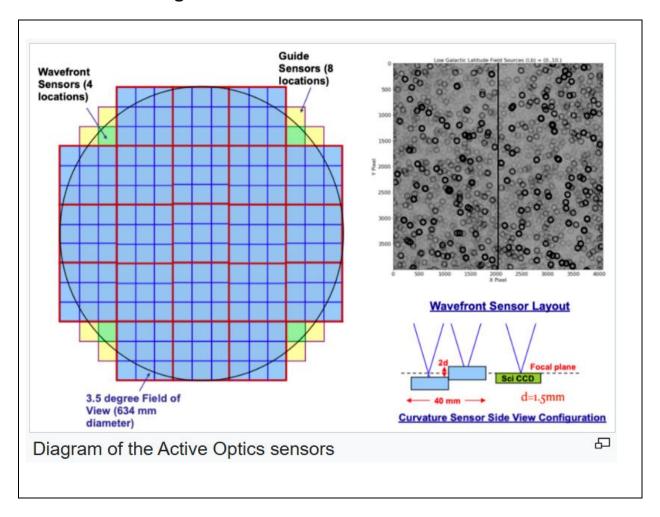
The Simonyi Survey Telescope design is unique among large telescopes (8-meter-class primary mirrors) for its wide field of view: 3.5 degrees in diameter, or 9.6 square degrees. For comparison, both the Sun and the Moon, as seen from Earth, are about 0.5 degrees in apparent diameter and each covers an apparent area of about 0.2 square degrees. Combined with its large aperture (and thus light-collecting ability), this gives Rubin a large etendue of 319 m²-degree². [1] This is more than three times the etendue of existing telescopes, the Subaru Telescope with its Hyper Suprime Camera [39] and Pan-STARRS, and more than an order of magnitude larger than most large telescopes. [40]

Optics

The earliest reflecting telescopes used spherical mirrors that were easy to fabricate and test. However, because they suffer from spherical aberration; a long focal length was needed to achieve a tolerable level of spherical aberration. Making the primary mirror parabolic removes spherical aberration on-axis, but the field of view is then limited by off-axis coma. Such a parabolic primary, with either a prime or Cassegrain focus, was the most common optical design up through the Hale Telescope in 1949. After that, telescopes mostly used the Ritchey-Chrétien design, using two hyperbolic mirrors to remove both spherical aberration and coma, increasing the useful field of view, limited by astigmatism and higher-order aberrations. Most later large telescopes used this design—for example, the Hubble and Keck telescopes. LSST instead uses a three-mirror anastigmat to cancel astigmatism by employing three non-spherical mirrors. The

result is sharp images over a wide field of view, at the expense of some light-gathering power due to the large tertiary mirror obscuring part of the optical path.^[41]

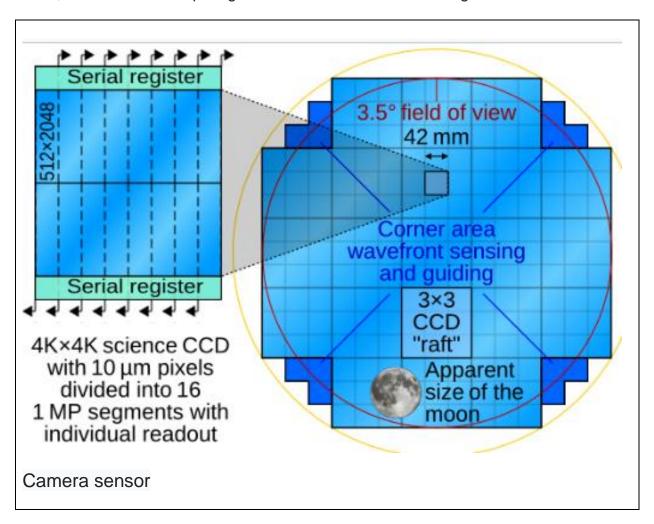
The telescope's primary mirror (M1) is 8.4 meters (28 ft) in diameter, [41][42] the secondary mirror (M2) is 3.4 meters (11.2 ft) in diameter, and the tertiary mirror (M3), inside the ring-like primary, is 5.0 meters (16 ft) in diameter. The secondary mirror is the largest convex mirror in any operating telescope. (It will be surpassed by the Extremely Large Telescope's 4.2-meter secondary when complete). The second and third mirrors reduce the primary mirror's light-collecting area to 35 square meters (376.7 sq ft), equivalent to a 6.68-meter-diameter (21.9 ft) telescope. [1] Multiplying this by the field of view produces an étendue of 336 m²-degree²; the actual figure is reduced by vignetting. [43]


The primary and tertiary mirrors (M1 and M3) are formed from a single piece of glass, the M1M3 monolith. Placing the two mirrors in the same location minimizes the overall length of the telescope, making it easier to quickly reorient. Making them from the same piece of glass results in a stiffer structure than two separate mirrors, contributing to rapid settling after motion.^[41]

The optics includes three corrector lenses to reduce aberrations. These lenses, and the telescope's filters, are built into the camera assembly. The first lens, at 1.55 m in diameter, is the largest lens ever built,^[44] and the third lens forms the vacuum window in front of the focal plane.^[43]

Unlike many telescopes,^[45] Rubin does not attempt to compensate for atmospheric dispersion. Such correction, which requires adjusting an additional element in the optical train, would be difficult to achieve in the 5 seconds available between pointings. It is also a technical challenge due to the short focal length. As a result, shorter wavelength bands away from the zenith have reduced image quality.^[46]

Wavefront sensing



The telescope uses an active optics system, with wavefront sensors at the corners of the camera, to keep the mirrors accurately figured and in focus. The field of view is too large to use adaptive optics to correct for atmospheric seeing. Sensing occurs in three stages:^[47]

- Laser trackers make sure the components are centered and are close to the intended positions.
- Open-loop corrections are applied to correct for intrinsic mirror aberrations, component sag as a function of elevation and temperature, and filter selection.

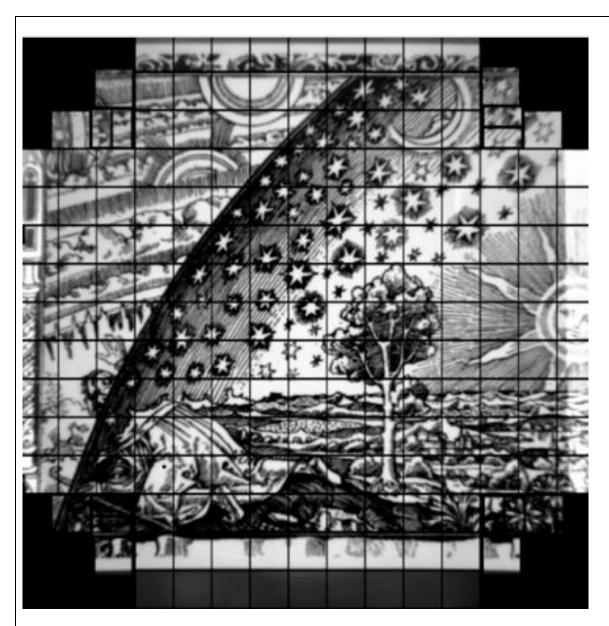
• Focus and figure measurements are made by sensors at the corners of the field of view to correct the optics.

The precise shape and focus of the mirror assembly is estimated, and then corrected, by comparing the images on four sets of deliberately defocused CCDs (one in front of the focal plane and one behind, see figure). One correction method proceeds analytically, estimating a Zernike polynomial description of the current shape of the mirror, and from this computing a set of corrections to restore figure and focus.^[48]

Camera

The 3.2-gigapixel digital camera takes 30-second exposures.[4][1] The camera is at the tertiary focus, not the prime focus. Located at a "trapped focus" in front of the primary mirror, the associated technical problems are similar to those of a conventional prime-focus survey camera.[citation needed] Repointing such a large telescope (including settling time) within 5 seconds requires a short and stiff structure. This in turn implies a small f-number, which requires precise focusing.[49]

Using two 15-second exposures is a compromise to allow spotting both faint and moving sources. The single 30-second exposure recommendation reduces the overhead of camera readout and telescope re-positioning, allowing deeper imaging. Cosmic ray hits on the CCDs ultimately became detected reliably in a single 30-second image. [4][51]


Life-size model of the focal plane array – the array's diameter is 64 cm, and will provide 3.2 gigapixels per image. The image of the Moon (30 arcminutes) is present to show the scale of the field of view. The model is held by Suzanne Jacoby, the Rubin Observatory communications director.

The camera focal plane is flat and 64 cm in diameter. The main imaging is performed by a mosaic of 189 16-megapixel CCD detectors. They are grouped into a 5x5 grid of "rafts". The central 21 rafts contain 3x3 imaging sensors, while the four corner rafts contain three each, for guiding and focus control. The CCDs provide better than 0.2-arcsecond sampling, and are cooled to approximately -100 °C (173 K) to reduce noise. [53]

The camera includes a filter located between the second and third lenses, and an automatic filter-changing mechanism. Although the camera has six filters (<u>ugrizy</u>) covering 330–1080 nm wavelengths, [54] the camera's position between the secondary

and tertiary mirrors limits the size of its filter changer. It can hold five filters at a time, so one of the six is omitted each night.^[55]

Image data processing

Scan of Flammarion engraving taken with the Rubin Observatory in September 2020^[56]

Allowing for maintenance, bad weather and other contingencies, the camera is expected to take more than 200,000 images (1.28 petabytes uncompressed) per year. Managing and effectively analyzing the images is expected to be the most technically

difficult part of the project.^{[57][58]} An estimated 250 teraflops and 100 petabytes of storage are required to keep up with the data flow.^[59]

Images are processed according to three different timescales, *prompt* (within 60 seconds), *daily*, and *annually*. [60]

Prompt products are alerts, issued within 60 seconds of observation, about objects that have changed brightness or position relative to archived images of that sky position. Transferring, processing, and differencing such large images within 60 seconds (previous methods took hours, on smaller images) is itself a significant <u>software engineering</u> problem. This processing will be performed at a classified US government facility in California so events that would reveal secret assets can be identified; and will be temporarily redacted for three days, by which time the data are less sensitive.

Up to 10 million alerts will be generated per night. Each alert includes: [63]:22

- Alert and database ID that uniquely identifies an alert
- Photometric, astrometric, and shape characterization of the detected source
- 30x30 pixel (on average) cut-outs of the template and difference images (in <u>FITS</u> format)
- Time series (up to one year) of previous detections of this source
- Summary statistics ("features") computed for the time series

No proprietary period is associated with alerts—they are immediately available to the public, since the goal is to quickly transmit nearly everything the Observatory knows about any given event, enabling classification and decision making. Since most observers are interested in only a fraction of the events, alerts are fed to "event brokers" that forward selections to interested parties. The Observatory will provide a simple broker, [63]:48 and provide the full alert stream to external event brokers. [64] The Zwicky Transient Facility serves as a prototype of the system, generating 1 million alerts per night. [65]

Daily products, released within 24 hours of observation, comprise the images from that night, and the source catalogs derived from difference images. This includes orbital parameters for Solar System objects. Images will be available in two forms: *Raw Snaps*, or data straight from the camera, and *Single Visit Images*, which have been processed and include instrumental signature removal (ISR), background estimation, source detection, deblending and measurements, point spread function estimation, and astrometric and photometric calibration.^[66]

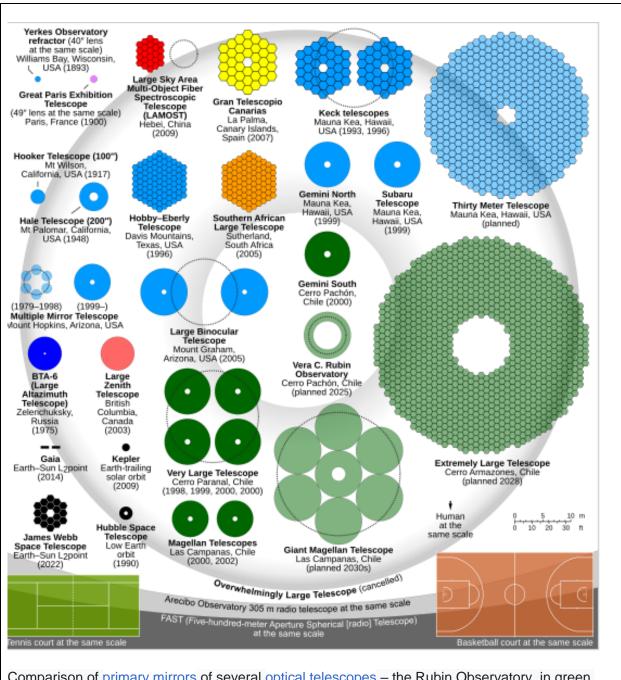
Annual release data products will be made available once a year, by re-processing the entire science data set to date. These include:

- Calibrated images
- Measurements of positions, fluxes, and shapes
- Variability information

- A description of light curves
- A uniform reprocessing of the difference-imaging-based prompt data products
- A catalog of roughly 6 million Solar System objects, with their orbits
- A catalog of approximately 37 billion sky objects (20 billion galaxies and 17 billion stars), each with more than 200 attributes^[59]

The annual release will be computed partially by the <u>National Center for</u> Supercomputing Applications, and partially by IN2P3 in France. [67]

The Observatory reserves 10% of its computing power and storage for *user-generated* data products. These are produced by custom algorithms for specialized purposes, using <u>application programming interfaces</u> (APIs) to access the data and store the results. This avoids the need to transfer huge quantities of data by allowing users to use Observatory storage and compute directly. It also allows academic groups to define custom release policies. [68]


An early version of the image processing software is used by the <u>Subaru Telescope</u>'s Hyper Suprime-Cam instrument, a wide-field survey instrument with sensitivity similar to the Observatory but one-fifth the field of view: 1.8 square degrees (versus 9.6 for the Observatory). HelioLinc3D software was developed specifically for the Observatory, to detect moving objects. [70]

LSST software pipelines are available as open source software on GitHub. [71][72]

Scientific goals

The Observatory will image about 18,000 deg2 of the southern sky with six filters in its main survey, with about 825 visits to each spot over 10 years. The 5σ (SNR greater than 5) magnitude limits are expected to be r < 24.5 in single images, and r < 27.8 in the full stacked data.[73]

The main survey use about 90% of the observing time. The remaining 10% is available for improved coverage for specific goals and regions. This includes deep ($r \sim 26$) observations, shorter revisit times (roughly one minute), observations of special regions such as the ecliptic, galactic plane, the Large and Small Magellanic Clouds, and areas covered in detail by multi-wavelength surveys such as COSMOS, the Chandra Deep Field South, [51] and the upcoming DSA-2000 radio survey. Combined, these special programs increase the total area to about 25,000 deg².[1]

Comparison of primary mirrors of several optical telescopes – the Rubin Observatory, in green, with its very large central hole, is near the center of the diagram.

Particular scientific goals include: [74]

Studying <u>dark energy</u> and <u>dark matter</u> by measuring <u>weak gravitational</u>
 <u>lensing</u>, <u>baryon acoustic oscillations</u>, and photometry of type la <u>supernovae</u>, all
 as a function of redshift. [51]

- Mapping <u>small objects in the Solar System</u>, particularly <u>near-Earth</u>
 <u>asteroids</u> and <u>Kuiper belt objects</u>. The Rubin Observatory is expected to increase
 the number of cataloged objects by a factor of 10–100. [75] It will also search for
 the hypothesized <u>Planet Nine</u>. [76][77][78]
- Detecting <u>transient astronomical events</u> including <u>novae</u>, <u>supernovae</u>, <u>gammaray bursts</u>, <u>quasar</u> variability, and <u>gravitational lensing</u>, and providing prompt event notifications to facilitate follow-up.
- Mapping the Milky Way.

Because of its wide field of view and sensitivity, the Rubin Observatory is expected to be among the best prospects for detecting optical counterparts to gravitational wave events detected by <u>LIGO</u> and other observatories.^[79]

NASA has been tasked by the Congress with detecting and cataloging 90% of the near Earth orbit population of size 140 meters or greater by 2020. The Observatory is estimated to be capable of detecting 62% of such objects, and according to the United States National Academy of Sciences, extending its survey from ten years to twelve is the most cost-effective way of finishing the task.

The Observatory has a program of Education and Public Outreach (EPO) that serves four main categories of users: the general public, educators, citizen scientists, and content developers at informal science education facilities. [83][84] The Observatory will partner with Zooniverse for a number of their citizen science projects. [85]

Comparison with other sky surveys

Top-end assembly lowered by a 500-ton capacity crane (March 2021)

Many other <u>optical sky surveys</u> have been conducted, some on-going, and the main ones are listed here. For comparison, the Rubin <u>magnitude</u> limits are expected to be r < 24.5 in single images, and r < 27.8 in the full stacked data.

- The <u>Harvard Plate Stacks</u> systemically photographed the night sky starting in the 1880s. This was done from observatories that the <u>Harvard College Observatory</u> established in North America in <u>Arequipa</u>, Peru, and <u>Bloemfontein</u>, South Africa. This was used in the creation of the <u>Henry Draper Catalogue</u> as well as the "Harvard Map of the Sky" in 1917 which published the first image of the visible universe across 74 photographic plates. The plates were made through the 1980s and capture every area of the night sky on at least 500–1,000 plates across a century of observations. These plates were studied by pioneering female astronomers called <u>Harvard Computers</u>. They were digitized in the <u>DASCH</u> project in anticipation of the Rubin Observatory, and have recently been made available with an API through a 1.2 petabyte database called StarGlass. [87]
- Photographic sky surveys, such as the <u>National Geographic Society Palomar Observatory Sky Survey</u> and its digitized version, the <u>Digitized Sky Survey</u>. This technology is obsolete, with much less depth and generally taken from locations with less-than-excellent views. These archives remain in use, for their lengthy time interval—more than 100 years in some cases—and cover the entire sky. The plate scans reached a limit of R~18 and B~19.5 over 90% of the sky, and about one magnitude fainter over 50% of the sky. [88]
- The Optical Gravitational Lensing Experiment (OGLE) (since 1992) is a variability survey of the Galactic bulge, Galactic disk, and Magellanic Clouds (imaging about 4100 square degrees of the sky) with the 1.3-meter Warsaw telescope located at Las Campanas Observatory, Chile. About 95% of the observations are in the I-band, while the rest are in the V-band, with the following brightness limits: 21.5 and 22.5 mag, respectively. By the end of 2024, the survey had collected 1.2 million exposures (about 500 TB of time-series data) for over 2 billion stars. [89]
- The <u>Sloan Digital Sky Survey</u> (SDSS) (2000–2009) surveyed 14,555 square degrees of the northern-hemisphere sky with a 2.5-meter telescope. It continues as a spectrographic survey. Its limiting photometric magnitude ranged from 20.5 to 22.2, depending on the filter. [90]
- Pan-STARRS (since 2010) is an ongoing sky survey using two wide-field 1.8-meter Ritchey—Chrétien telescopes located at Haleakala in Hawaii. Until the Observatory began operation, it remained the best detector of near-Earth objects. Its coverage, 30,000 square degrees, is comparable to the Observatory coverage. The single-image depth in the PS1 survey was between magnitude 20.9–22.0, depending on filter.
- The <u>DESI</u> Legacy Imaging Surveys (since 2013) looks at 14,000 square degrees
 of the northern and southern sky with the <u>Bok 2.3-meter telescope</u>, the 4-meter
 <u>Mayall telescope</u>, and the 4-meter <u>Víctor M. Blanco Telescope</u>. The Legacy
 Surveys make use of the Mayall z-band Legacy Survey, the Beijing–Arizona Sky

- Survey, and the <u>Dark Energy Survey</u>. The Legacy Surveys avoided the Milky Way to concentrate on distant galaxies. [92] The area of DES (5,000 square degrees) is entirely contained within the Observatory's survey area. [93] Its exposures typically reach magnitude 23–24.
- <u>Gaia</u> was a space-based survey of the entire sky from 2014 to March 2025, whose primary goal is extremely precise <u>astrometry</u> of roughly two billion stars, quasars, galaxies, and Solar System objects. Its collecting area of 0.7 m² did not allow observation of objects as faint as can be included in other surveys, but the location of each object observed is known with far greater precision. While not taking exposures in the traditional sense, it detected objects up to a magnitude of 21.^[94]
- The Zwicky Transient Facility (since 2018) is a similar, rapid, wide-field survey to detect transient events. The telescope has an even larger field of view (47 square degrees; 5x the field), but a significantly smaller aperture (1.22 m; 1/30 the area). It is being used to develop and test the Observatory automated alert software. Its exposures typically reach magnitude 20–21. [95]
- The <u>Space Surveillance Telescope</u> (since 2011) is a similar rapid wide-field survey telescope used primarily for military applications, with secondary civil applications including space debris and NEO detection and cataloging. [96]

Construction

Construction progress as of 2022

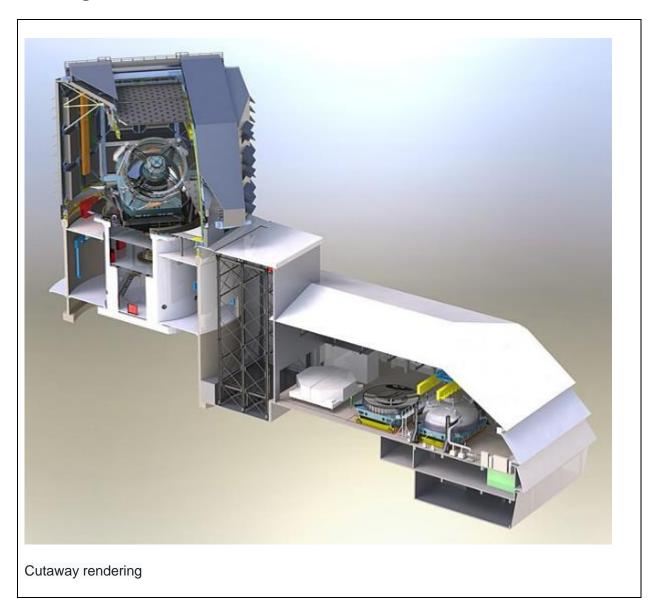
The Cerro Pachón site was selected in May 2006, beating out the alternative <u>Sierra de San Pedro Mártir</u> site. [97] The main factors were the frequency of clear nights, weather patterns, and the image quality permitted by the local atmosphere (seeing). The site also had to have existing observatory infrastructure, to minimize construction costs, and access to fiber optic links, to handle the data flux. [98]

In March 2020, work on the summit facility and the main camera at SLAC, was suspended due to the <u>pandemic</u>, though work on software continued. During this time, the commissioning camera reached the base facility and was tested. It was moved to the summit and installed in August 2022.

Mirrors

The primary/tertiary mirror, August 2008

The primary mirror, the most critical and time-consuming element, was made over a seven-year period by the <u>University of Arizona</u>'s <u>Steward Observatory</u> Mirror Lab. [101] Construction of the mold began in November 2007, [102] mirror casting was begun in March 2008, [103] and the mirror blank was declared "perfect" at the beginning of September 2008. [104]


Polishing of the primary/tertiary mirror was completed in 2015 and it was formally accepted on 13 February 2015, [105][106] then placed in the mirror transport box. [107] In October 2018, it was moved back to the mirror lab and integrated with the mirror support cell. [108] It went through additional testing in January/February 2019. In March 2019, it was trucked to Houston, Texas, [109] traveled by ship to Chile, [110] and arrived on

the summit in May. [111] In April 2024, it was re-united with the mirror support cell and coated. [112]

The coating chamber, which was used to coat the mirrors once they arrived, itself arrived at the summit in November 2018. [108]

The secondary mirror was manufactured by <u>Corning</u> of <u>ultra low expansion glass</u> and coarse-ground to within 40 µm of the desired shape. [113] In November 2009, the blank was shipped to <u>Harvard University</u>, [114] pending funding to complete it. On 21 October 2014, it was delivered to <u>Exelis</u> (now a subsidiary of <u>Harris Corporation</u>) for fine grinding. [115] The completed mirror was delivered to Chile on 7 December 2018, [108] and was coated in July 2019. [116]

Building

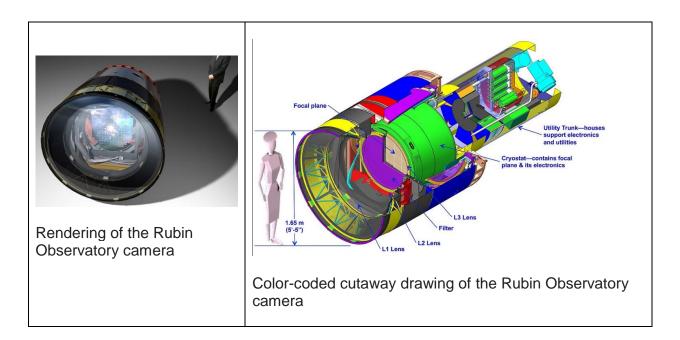
Site excavation began in earnest on 8 March 2011.[117][118]

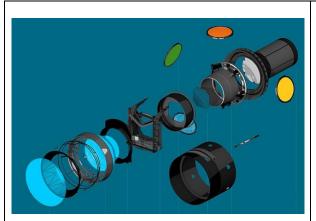
In 2015, a large amount of broken rock and clay was found under the site of the support building. This caused a six-week construction delay. This did not affect the telescope proper or its dome. [119][120]

The building was declared <u>substantially complete</u> in March 2018. The then-incomplete dome first rotated under its own power in November 2019.

Telescope mount assembly

Telescope Mount Assembly of the 8.4-meter Simonyi Survey Telescope


The <u>telescope mount</u>, and the pier on which it sits, are themselves substantial engineering projects. The main technical challenge was that the telescope must slew 3.5 degrees to the adjacent field and settle within four seconds. Five seconds are allowed between exposures, but one second is reserved for the mirrors and instrument to be aligned, leaving four seconds to move the structure. [123]:10 This requires a stiff pier


and telescope mount, with high-speed slew and acceleration (10°/sec and 10°/sec², respectively^[124]). The basic design is conventional: an altitude over azimuth mount made of steel, with hydrostatic bearings on both axes, mounted on a pier that is isolated from the dome foundations. The Observatory pier is unusually large (16 m diameter), robust (1.25-meter-thick walls) and mounted directly to virgin bedrock,^[123] where care was taken during site excavation to avoid using explosives that would crack it.^{[120]:11-12} Other unusual design features are linear motors on the main axes and a recessed floor on the mount. This allows the telescope to extend slightly below the azimuth bearings, lowering its center of gravity.

The contract for the asembly was signed in August 2014. It passed its acceptance tests in 2018 and arrived at the site in September 2019. By April 2023, the mount was declared "essentially complete" and turned over to the Observatory.

Camera

In August 2015, the LSST Camera project, separately funded by the U.S. Department of Energy (DoE), passed its "critical decision 3" design review.[128] On 31 August, construction began at SLAC.[129] By September 2018, the cryostat was complete, the lenses ground, and 12 of the 21 CCD rafts had been delivered.[130] As of September 2020, the entire focal plane was undergoing testing.[56] By October 2021, the last of the six filters had been finished and delivered.[131] By November 2021, the entire camera had been cooled to its required operating temperature, allowing final testing.[132]

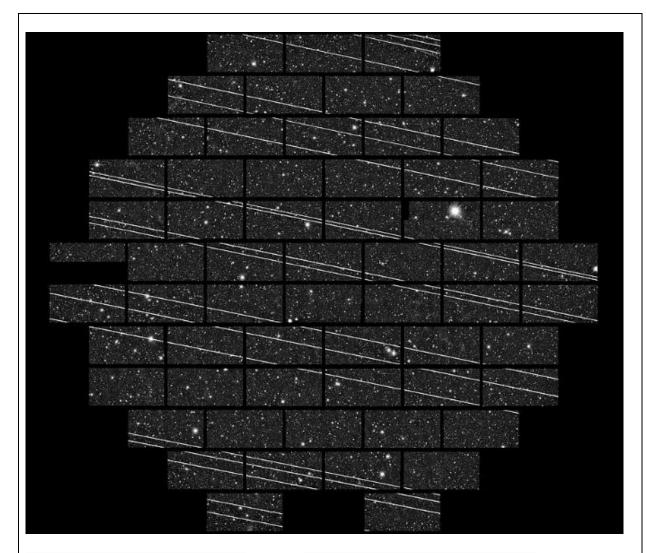
Exploded view of the optical components of the Rubin Observatory camera

Vera C. Rubin Observatory Commissioning Camera install

Before the final camera installation, a smaller and simpler version (the Commissioning Camera, or ComCam) was used "to perform early telescope alignment and commissioning tasks, complete engineering first light, and possibly produce early usable science data".[133][134]

The camera was reported complete in early 2024. The camera arrived at the observatory in May 2024, and was installed in March 2025. And are camera arrived at the

Data transport and redaction


The data must be transported from the camera at the summit, to the base facilities, and then to the Rubin Observatory United States Data Facility (USDF) at SLAC. [138][139] Data is routed via a \$5 million dedicated encrypted network to a <u>United States Intelligence Community</u> facility in California. An automated system detects events, filters events containing sensitive objects, and releases imagery covering the remaining events to the scientific community after one minute. Complete images are released 80 hours later, after the satellites' orbits change, avoiding the permanent redaction done to images from the Pan-STARRS survey. [62][140]

This transfer must be 100 Gbit/s or better and reliable, since the USDF is where the data is processed into scientific data products, including real-time alerts of transient events. This transfer uses multiple fiber optic cables to reach <u>Santiago</u>, Chile, then via redundant routes to Miami, Florida, where it connects to existing high speed conduits. These links were activated in March 2018 by the AmLight consortium. [141]

Since the data crosses international borders, many groups are involved. These include the <u>Association of Universities for Research in Astronomy</u> (AURA, Chile, and the US), REUNA^[142] (Chile), <u>Florida International University</u> (US), AmLightExP^[141] (US), RNP^[143] (Brazil), and USDF (US), all of which participate in the Rubin Observatory Network

Engineering Team (NET). This collaboration designs and delivers end-to-end network performance across network domains and providers. [citation needed]

Satellite constellations

333 second-exposure image of the night sky containing 19 or more streaks due to Starlink satellite's light pollution – image from CTIO's Dark Energy Camera that has a similar field of view to the Rubin Observatory camera

While taking a long exposure, a satellite can cross the field of view, leaving a streak on the image. While it is possible to model and remove a streak, the residual <u>Poisson noise</u> lowers the signal-to-noise ratio of the corrected pixels too much to be of scientific value. The issue came to prominence when a satellite train crossed an image taken by <u>Cerro Tololo Inter-American Observatory</u> (CTIO). [144][145]

Starlink has launched 7,000 satellites to low Earth orbit (LEO), with plans to expand to 12,000 and then to 34,400. [146] Even if the Starlink constellation does not reach its planned size, the Project Kuiper and OneWeb LEO satellite constellations led to concern about how satellites could affect astronomical images. [147] Estimates suggested that 30-40% of the images taken early and late at night could be compromised. [148] This will impact science missions such as the observation of near-Earth objects. These must be observed in the same time frame as satellites as both need illumination by the sun near twilight before they are obscured by the earth's shadow. [149]

The Observatory has simulated altering their observing strategy to avoid satellite streaks. They found that this would increase slew times, sacrificing around 10% of observing time, to decrease the number of satellite streaks by a factor of two. [150] Studies reported that even in the regime of very large satellite constellations (30,000 satellites), 8% of all science images would have a satellite streak, costing around 0.04% of the total number of science pixels. [151]

References

- 1. <u>"LSST System & Survey Key Numbers"</u>. LSST Corporation. 3 April 2013. <u>Archived</u> from the original on 27 September 2018. Retrieved 5 August 2015.
- 2. <u>Overbye, Dennis</u> (11 January 2020). <u>"Vera Rubin Gets a Telescope of Her Own The astronomer missed her Nobel Prize. But she now has a whole new observatory to her name"</u>. <u>The New York Times</u>. <u>Archived</u> from the original on 11 January 2020. Retrieved 11 January 2020.
- 3. <u>"NSF-supported observatory renamed for astronomer Vera C. Rubin"</u>. www.nsf.gov. 7 January 2020. <u>Archived from the original on 8 January 2020</u>. Retrieved 7 January 2020.
- 4. <u>"Survey Cadence Optimization Committee's Phase 3 Recommendations"</u>. pstn-056.lsst.io. 6 January 2025. <u>Archived</u> from the original on 19 March 2025. Retrieved 24 June 2025.
- 5. <u>"Press Release LSSTC-04: Site in Northern Chile Selected for Large Synoptic Survey Telescope"</u> (PDF) (Press release). LSST. 17 May 2006. <u>Archived</u> (PDF) from the original on 26 September 2015. Retrieved 1 August 2015.
- 6. <u>"Funding Information"</u>. rubinobservatory.org. <u>Archived</u> from the original on 10 April 2025. Retrieved 10 April 2025.
- 7. Telescope, Large Synoptic Survey (12 June 2015). <u>"LSST General Public FAQs"</u>. Rubin Observatory. <u>Archived</u> from the original on 25 April 2020. Retrieved 11 September 2020.
- 8. <u>"Camera"</u>. LSST. 26 March 2013. <u>Archived</u> from the original on 30 July 2015. Retrieved 1 August 2015.
- 9. Kahn, Steven; Krabbendam, Victor (August 2014). <u>"LSST Construction Authorization"</u> (Press release). Lsst Corp. Archived from <u>the original</u> on 10 April 2016. Retrieved 25 August 2014.
- 10. <u>"LSST-DA Supporters | LSST Discovery Alliance"</u>. Isstdiscoveryalliance.org. 6 November 2023. Archived from the original on 5 May 2025. Retrieved 23 June 2025.
- 11. Telescope, Large Synoptic Survey. <u>"Rubin Observatory"</u>. Rubin Observatory. Retrieved 3 July 2025.

- 12. Mervis, Jeffrey (21 May 2018). <u>"Surprise! House spending panel gives NSF far more money for telescope than it requested"</u>. AAAS. <u>Archived</u> from the original on 8 November 2022. Retrieved 30 June 2022.
- 13. <u>"LSST First Stone"</u> (Press release). LSST Corporation. 14 April 2015. <u>Archived</u> from the original on 21 June 2015. Retrieved 20 June 2015.
- 14. <u>"The Large Synoptic Survey Telescope: Unlocking the secrets of dark matter and dark energy"</u>. Phys.org. 29 May 2015. <u>Archived</u> from the original on 27 December 2017. Retrieved 3 June 2015.
- 15. <u>"Locations of Target Fields Observed during On-sky Commissioning Campaign with ComCam"</u>. LSST Corporation. 3 November 2024.
- 16. <u>"Monthly updates"</u>. LSST Corporation. 10 December 2024. <u>Archived</u> from the original on 24 February 2023. Retrieved 2 January 2025.
- 17. Walsh, Bryan (28 June 2025). "How the largest digital camera ever made is revolutionizing our view of space". Vox. Retrieved 12 July 2025.
- 18. Rhee, George (13 August 2013). Cosmic Dawn: The Search for the First Stars and Galaxies. Springer Science & Business Media. p. 237. ISBN 978-1-4614-7813-3.
- 19. <u>"H.R. 3196, the Vera C. Rubin Observatory Designation Act | House Committee on Science, Space and Technology"</u>. science.house.gov. Archived from <u>the original</u> on 2 March 2020. Retrieved 7 January 2020.
- 20. Johnson, Eddie Bernice (20 December 2019). <u>"H.R.3196 116th Congress (2019–2020): Vera C. Rubin Observatory Designation Act"</u>. www.congress.gov. Retrieved 7 January 2020.
- 21. <u>"About Rubin Observatory"</u>. 2 April 2013. <u>Archived</u> from the original on 30 July 2015. Retrieved 26 January 2022.
- 22. "FAQ | Vera Rubin Observatory". www.vro.org. Retrieved 4 February 2020.
- 23. "Simonyi Survey Telescope". noirlab.edu. Retrieved 6 August 2025.
- 24. "NSF-DOE Vera C. Rubin Observatory Name guidelines". Vera C. Rubin Observatory.
- 25. Djorgovski, S. George; Mahabal, Ashish; Drake, Andrew; Graham, Matthew; Donalek, Ciro (2013). "Sky Surveys". In Oswalt, Terry (ed.). Planets, Stars and Stellar Systems. Springer Netherlands. pp. 223–281. <u>arxiv:1203.5111</u>. <u>doi:10.1007/978-94-007-5618-2_5</u>. <u>ISBN 978-94-007-5617-5</u>. S2CID 119217296.
- 26. Tyson, A.; Angel, R. Clowes, Roger; Adamson, Andrew; Bromage, Gordon (eds.). <u>The Large-aperture Synoptic Survey Telescope</u>. The New Era of Wide Field Astronomy, ASP Conference Series. Vol. 232. San Francisco, California: Astronomical Society of the Pacific. p. 347. <u>ISBN 1-58381-065-X</u>. <u>Archived</u> from the original on 22 August 2018. Retrieved 18 April 2018.
- 27. Press, W. H. (9–14 July 1995). Kochanek, C. S.; Hewitt, Jacqueline N. (eds.). <u>Prognosticating The Future Of Gravitational Lenses</u>. Astrophysical applications of gravitational lensing: proceedings of the 173rd Symposium of the International Astronomical Union. Vol. 173. International Astronomical Union. Melbourne, Australia: Kluwer Academic Publishers; Dordrecht. p. 407. <u>Archived</u> from the original on 19 April 2018. Retrieved 18 April 2018.
- 28. <u>Astronomy and astrophysics in the new millennium</u>. Washington, D.C.: National Academy Press. 2001. pp. 11–
 12. <u>Bibcode:2001aanm.book....N</u>. <u>doi:10.17226/9839</u>. <u>ISBN 978-0-309-07312-7</u>. <u>Archived</u> from the original on 5 April 2025. Retrieved 23 June 2025.
- 29. Overbye, Dennis (3 January 2008). "Donors Bring Big Telescope a Step Closer". The New York Times. Archived from the original on 20 August 2018. Retrieved 3 January 2008.

- 30. <u>"LSST Project Office Update"</u>. March 2012. Archived from <u>the original</u> on 19 February 2013. Retrieved 7 April 2012.
- 31. "World's largest digital camera gets green light". 8 November 2011. Archived from the original on 27 September 2012. Retrieved 7 April 2012./
- 32. Chang, Kenneth; Miller, Katrina (23 June 2025). "Vera Rubin Scientists Reveal Telescope's First Images". The New York Times. ISSN 0362-4331. Retrieved 23 June 2025.
- 33. Wells, Ione; Rannard, Georgina (23 June 2025). <u>"First celestial image unveiled from revolutionary telescope"</u>. <u>BBC</u>. <u>Archived</u> from the original on 23 June 2025. Retrieved 24 June 2025.
- 34. <u>"Welcome to your First Look at the cosmos from NSF–DOE Rubin Observatory"</u>. Vera C. Rubin Observatory. 23 June 2025. Retrieved 24 June 2025.
- 35. Greenfieldboyce, Nell (23 June 2025). <u>"The Vera C. Rubin Observatory's first images are stunning and just the start"</u>. NPR. <u>Archived</u> from the original on 23 June 2025. Retrieved 23 June 2025.
- 36. Klesman, Alison (23 June 2025). <u>"Here are the first-ever images released by the Vera</u> C. Rubin Observatory". Astronomy Magazine. Retrieved 23 June 2025.
- 37. Meghan Bartels (23 June 2025), "Majestic First Images from Rubin Observatory Show Universe in More Detail Than Ever Before", Scientific American
- 38. <u>"Vera C Rubin Observatory first images"</u>. BBC Sky at Night Magazine. 23 June 2025. Retrieved 23 June 2025.
- 39. Aihara, Hiroaki; et al. (2018). "The Hyper Suprime-Cam SSP Survey: Overview and survey design". Publications of the Astronomical Society of Japan. **70** (SP1) S4. <u>arXiv:1704.05858</u>. <u>Bibcode:2018PASJ...70S...4A</u>. <u>doi:10.1093/pasj/psx066</u>. <u>S2CID</u> 119266217.
- 40. <u>"Community Science Input and Participation"</u>. LSST. 18 June 2013. <u>Archived from the original on 3 August 2020</u>. Retrieved 6 April 2018.
- 41. Gressler, William (2 June 2009). <u>"LSST Optical Design Summary"</u> (PDF). LSE-11. Archived from the original (PDF) on 20 March 2012. Retrieved 1 March 2011.
- 42. Tuell, Michael T.; Martina, Hubert M.; Burge, James H.; Gressler, William J.; Zhao, Chunyu (22 July 2010). "Optical testing of the LSST combined primary/tertiary mirror" (PDF). Modern Technologies in Space- and Ground-based Telescopes and Instrumentation. Proceedings of SPIE. Vol. 7739. pp. 77392V. Bibcode:2010SPIE.7739E..2VT. doi:10.1117/12.857358. S2CID 49567158. Archived from the original (PDF) on 5 March 2016. Retrieved 5 August 2015.
- 43. "Rubin Observatory Optical Design". Rubin Observatory. 3 April 2013.
- 44. Overton, Gail (13 September 2019). <u>"LLNL ships world's largest optical lens to SLAC for the LSST telescope"</u>. Laser Focus World. <u>Archived</u> from the original on 19 September 2019. Retrieved 19 September 2019.
- 45. Miyazaki, S.; Komiyama, Y.; Kawanomoto, S.; Doi, Y.; Furusawa, H.; Hamana, T.; Hayashi, Y.; Ikeda, H.; Kamata, Y.; Karoji, H.; and Koike, M. (2018). "Hyper Suprime-Cam: System design and verification of image quality". Publications of the Astronomical Society of Japan. 70 (SP1): S1. doi:10.1093/pasi/psx063. Archived from the original on 19 November 2021. Retrieved 19 November 2021.
- Seppala, Lynn G. (2002). "Improved optical design for the Large Synoptic Survey Telescope (LSST)". In Tyson, J. Anthony; Wolff, Sidney (eds.). Survey and Other Telescope Technologies and Discoveries. SPIE Proceedings. Vol. 4836. p. 111. <u>Bibcode</u>:2002SPIE.4836..111S. <u>doi:10.1117/12.461389</u>. <u>OSTI 15002241</u>. No correction for atmospheric dispersion or ADC has been incorporated. The extremely fast

- focal ratio and the expected rapid pointing changes during the course of observations preclude any compensation technique. Reduced image quality will have to be accepted at the lower wavelength bands at angles away from the zenith.
- 47. Thomas, S.; Connolly, A.; Crenshaw, J. F.; Bryce, K. J.; Megias, G.; Meyers, J. E.; Ribeiro, T.; Tsai, T.-W.; Claver, C.; Neill, D.; Braga, V. F.; Fiorentino, G.; Savarese, S.; Schipani, P.; Schreiber, L.; Di Criscienzo, M. (June 2023). Rubin Observatory Simonyi Survey Telescope Active Optics (7 ed.). Adaptive Optics for Extremely Large Telescopes (AO4ELT7). Bibcode:2023aoel.confE..67T. doi:10.13009/AO4ELT7-2023-069. Archived from the original on 4 April 2024. Retrieved 4 April 2024.
- 48. Megias Homar, Guillem; Meyers, Joshua E.; Thomas, Sandrine J.; Kahn, Steven M.; Connolly, Andrew J.; Crenshaw, John Franklin; Kalmbach, J. Bryce; Suberlak, Krzysztof; Polen, Rebekah; Tsai, Tei-Wei; Ribeiro, Tiago; Tighe, Roberto; Rodeghiero, Gabriele; Canestrari, Rodolfo; Giro, Enrico; Niell, Douglas; Kubanek, Petr; Rosignoli, Luca; Rivera, Mario; Sebag, Jacques; Mills, Dave; Zorzi, Pablo; Lopez, Juan; Jimenez, David; Ordenes, Ian; Fabrega, Juan (11 September 2024), "Advancing the Vera C. Rubin Observatory active optics control system", in Marshall, Heather K.; Spyromilio, Jason; Usuda, Tomonori (eds.), Ground-based and Airborne Telescopes X, p. 205, doi:10.1117/12.3019361, ISBN 978-1-5106-7511-7
- 49. Kahn, Steven M. (2014). <u>"The Large Synoptic Survey Telescope"</u> (PDF). <u>Archived</u> (PDF) from the original on 27 July 2020. Retrieved 27 July 2020.
- 50. <u>"LSST Tour"</u>. LSST. <u>Archived</u> from the original on 12 June 2007. Retrieved 9 May 2018.
- 51. Ivezić, Ž.; et al. (29 August 2014). <u>"LSST: From Science Drivers to Reference Design and Anticipated Data Products (v1.0)"</u>. The Astrophysical Journal. **873** (2): 111. <u>arXiv:0805.2366</u>. <u>Bibcode:2019ApJ...873..111</u>. <u>doi:10.3847/1538-4357/ab042c</u>. <u>S2CID</u> <u>16790489</u>., this is a comprehensive overview of the Rubin Observatory.
- 52. <u>"Technical Details"</u>. Large Synoptic Survey Telescope. 11 June 2013. <u>Archived</u> from the original on 5 March 2016. Retrieved 3 March 2016.
- 53. <u>"LSST Camera Focal Plane | Rubin Observatory"</u>. www.lsst.org. 11 June 2013. <u>Archived</u> from the original on 20 August 2018. Retrieved 15 May 2017.
- 54. <u>"LSST filters vs. SDSS"</u>. community.lsst.org. 27 November 2017. <u>Archived</u> from the original on 15 September 2022. Retrieved 22 September 2020.
- 55. <u>"LSST Camera filter changer"</u>. gallery.lsst.org. <u>Archived</u> from the original on 5 April 2018. Retrieved 22 September 2020.
- 56. "Sensors of world's largest digital camera snap first 3,200-megapixel images at SLAC". SLAC National Accelerator Laboratory. Archived from the original on 12 December 2020. Retrieved 8 September 2020.
- 57. Stephens, Matt (3 October 2008). "Mapping the universe at 30 Terabytes a night: Jeff Kantor, on building and managing a 150 Petabyte database". The Register. Archived from the original on 17 October 2012. Retrieved 3 October 2008.
- 58. Stephens, Matt (26 November 2010). <u>"Petabyte-chomping big sky telescope sucks down baby code"</u>. <u>The Register</u>. <u>Archived</u> from the original on 22 October 2012. Retrieved 16 January 2011.
- 59. <u>"Data Management Technology Innovation"</u>. LSST. 19 June 2013. <u>Archived</u> from the original on 27 September 2018. Retrieved 6 May 2018.
- 60. <u>"Data Products"</u>. LSST. 11 June 2013. <u>Archived</u> from the original on 3 August 2020. Retrieved 7 May 2018.

- 61. Morganson, Eric (22 May 2017). <u>From DES to LSST: Transient Processing Goes from Hours to Seconds</u> (PDF). <u>Building the Infrastructure for Time-Domain Alert Science in the LSST Era</u>. Tucson, Arizona. <u>Archived</u> (PDF) from the original on 9 May 2018. Retrieved 9 May 2018.
- 62. Andersen, Ross (2 December 2024). <u>"When a Telescope Is a National-Security Risk"</u>. The Atlantic. <u>Archived</u> from the original on 2 December 2024. Retrieved 2 December 2024 via MSN.
- 63. Bellm, Eric (26 February 2018). <u>Alert Streams in the LSST Era: Challenges and Opportunities</u>. <u>Real-Time Decision Making: Applications in the Natural Sciences and Physical Systems</u>. Berkeley, California. <u>Archived</u> from the original on 30 June 2018. Retrieved 9 May 2018.
- 64. Telescope, Large Synoptic Survey (19 November 2019). "Alert Brokers". Rubin Observatory. Archived from the original on 16 May 2022. Retrieved 22 April 2022.
- 65. Bellm, Eric (22 May 2017). <u>Time Domain Alerts from LSST & ZTF</u> (PDF). <u>Building the Infrastructure for Time-Domain Alert Science in the LSST Era</u>. Tucson, Arizona. <u>Archived</u> (PDF) from the original on 9 May 2018. Retrieved 8 May 2018.
- 66. Jurić, M.; Axelrod, T.; Becker, A. C.; Becla, J.; Bellm, Eric; Bosch, J. F.; et al. (9 February 2018). "Data Products Definition Document" (PDF). LSST Corporation. Archived (PDF) from the original on 9 May 2018. Retrieved 9 May 2018. p. 53.
- 67. <u>"LSST-French Connection"</u>. April 2015. <u>Archived</u> from the original on 6 July 2019. Retrieved 7 May 2018.
- 68. <u>"Future data products"</u>. rubinobservatory.org. <u>Archived</u> from the original on 23 June 2025. Retrieved 23 June 2025.
- 69. Bosch, J.; Armstrong, R.; Bickerton, S.; Furusawa, H.; Ikeda, H.; Koike, M.; Lupton, R.; Mineo, S.; Price, P.; Takata, T.; Tanaka, M. (8 May 2017). "The Hyper Suprime-Cam software pipeline". Publications of the Astronomical Society of Japan. 70 S5. <u>arXiv:1705.06766</u>. <u>doi:10.1093/pasj/psx080</u>. <u>S2CID</u> 119350891.
- 70. Andrews, Robin George (5 August 2023). <u>"Killer Asteroid-Spotting Software Could Help Save the World"</u>. <u>The New York Times</u>. <u>Archived</u> from the original on 6 August 2023. Retrieved 6 August 2023.
- 71. <u>"LSST Science Pipelines Software"</u>. GitHub. <u>Archived</u> from the original on 20 April 2025. Retrieved 23 June 2025.
- 72. <u>"LSST Science Pipelines documentation"</u>. Vera C. Rubin Observatory. <u>Archived</u> from the original on 13 May 2025. Retrieved 23 June 2025.
- 73. Kahn, Steven M.; Bankert, Justin R.; Chandrasekharan, Srinivasan; Claver, Charles F.; Connolly, A. J.; et al. <u>"Chapter 3: LSST System Performance"</u> (PDF). LSST. <u>Archived</u> (PDF) from the original on 20 August 2018. Retrieved 11 May 2018.
- 74. Telescope, Large Synoptic Survey (9 September 2014). <u>"LSST Science Goals"</u>. www.lsst.org. The Large Synoptic Survey Telescope. <u>Archived</u> from the original on 1 September 2018. Retrieved 3 April 2018.
- 75. Jones, R. Lynne; Juric, Mario; Ivezic, Zeljko (10 November 2015). Asteroid Discovery and Characterization with the Large Synoptic Survey Telescope (LSST). IAU-318 Asteroids: New Observations, New Models. <u>arXiv</u>:1511.03199.
- 76. <u>"The search for Pluto's successor continues with Rubin Observatory, could Planet X be the answer?"</u>. FirstPost. 29 June 2020. <u>Archived</u> from the original on 13 April 2021. Retrieved 17 February 2021.
- 77. Siraj, Amir; Loeb, Abraham (July 2020). "Searching for Black Holes in the Outer Solar System with LSST". The Astrophysical Journal Letters. **898** (1):

- L4. <u>arXiv:2005.12280</u>. <u>Bibcode:2020ApJ...898L...4S</u>. <u>doi:10.3847/2041-</u>8213/aba119. S2CID 218889510. L4.
- 78. Siraj, Amir; Chyba, Christopher F.; Tremaine, Scott (10 January 2025). "Orbit of a Possible Planet X". The Astrophysical Journal. **978** (2): 139. <u>arXiv:2410.18170</u>. <u>Bibcode:2025ApJ...978..1395</u>. <u>doi:10.3847/1538-4357/ad98f6</u>. ISSN 0004-637X.
- 79. <u>"LSST Detection of Optical Counterparts of Gravitational Waves 2019"</u>. markalab.github.io.
- 80. "Chapter 3". Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies. National Academies Press. 2010. pp. 29—30. doi:10.17226/12842. ISBN 978-0-309-14968-6. The NASA Authorization Act of 2005 (Public Law 109-155), directed that NASA detect 90 percent of near-Earth objects 140 meters in diameter or greater by 2020.
- 81. Grav, Tommy; Mainzer, A. K.; Spahr, Tim (June 2016). "Modeling the performance of the LSST in surveying the near-Earth object population". The Astronomical Journal. 151 (6):
 172. arXiv:1604.03444. Bibcode:2016AJ...151..172G. doi:10.3847/0004-6256/151/6/172.
- 82. <u>Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies</u>. National Academies Press. 2010. <u>doi:10.17226/12842</u>. <u>ISBN 978-0-309-14968-6</u>. <u>Archived</u> from the original on 30 April 2017. Retrieved 12 May 2018., page 49.
- 83. <u>"Education & Public Outreach"</u>. LSST. 11 May 2015. <u>Archived</u> from the original on 20 August 2018. Retrieved 9 May 2018.
- 84. <u>"Large Synoptic Survey Telescope (LSST) EPO Design"</u>. LSST Corporation. 29 November 2017. <u>Archived</u> from the original on 20 August 2018. Retrieved 9 May 2018.
- 85. <u>"Project & Science News for Tuesday, May 8, 2018"</u>. LSST. 8 May 2018. <u>Archived from the original on 20 August 2018</u>. Retrieved 11 May 2018.
- 86. Doane, Allison (1–3 November 2007). "DASCH to Measure (and preserve) the Harvard Plates: Opening the ~100-year Time Domain Astronomy Window". Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates. **410**: 104–105.
- 87. <u>"StarGlass"</u>. starglass.cfa.harvard.edu. <u>Archived</u> from the original on 19 May 2025. Retrieved 26 May 2025.
- 88. Lasker, Barry M.; Lattanzi, Mario G.; McLean, Brian J.; Bucciarelli, Beatrice; Drimmel, Ronald; Garcia, Jorge; Greene, Gretchen; Guglielmetti, Fabrizia; Hanley, Christopher; Hawkins, George; Laidler, Victoria G.; Loomis, Charles; Meakes, Michael; Mignani, Roberto; Morbidelli, Roberto; Morrison, Jane; Pannunzio, Renato; Rosenberg, Amy; Sarasso, Maria; Smart, Richard L.; Spagna, Alessandro; Sturch, Conrad R.; Volpicelli, Antonio; White, Richard L.; Wolfe, David; Zacchei, Andrea (11 July 2008). "The Second-Generation Guide Star Catalog: Description and Properties". The Astronomical Journal. 136 (2). American Astronomical Society: 735–766. <u>arXiv:0807.2522</u>. <u>Bibcode:2008AJ....136..735L</u>. <u>doi:10.1088/0004-6256/136/2/735</u>. <u>ISSN 0004-6256</u>. <u>S2CID</u> 17641056.
- 89. "OGLE survey". Archived from the original on 3 June 2025. Retrieved 16 June 2025.
- 90. "SDSS DR12 Scope". Archived from the original on 17 August 2021. Retrieved 7 July 2021.
- 91. <u>"The Pan-STARRS data archive home page"</u>. <u>Archived</u> from the original on 27 June 2021. Retrieved 7 July 2021.

- 92. Survey, Legacy (8 November 2012). "Index". Legacy Survey. Archived from the original on 1 June 2025. Retrieved 4 February 2020.
- 93. Ivezić, Željko (24 March 2014). <u>Similarities and differences between DES and LSST</u> (PDF). Joint DES-LSST workshop. Fermilab. <u>Archived</u> (PDF) from the original on 10 May 2018. Retrieved 10 May 2018.
- 94. Collaboration, Gaia; Bailer-Jones, C. a. L.; Teyssier, D.; Delchambre, L.; Ducourant, C.; Garabato, D.; Hatzidimitriou, D.; Klioner, S. A.; Rimoldini, L.; Bellas-Velidis, I.; Carballo, R.; Carnerero, M. I.; Diener, C.; Fouesneau, M.; Galluccio, L. (June 2023). "Gaia Data Release 3. The extragalactic content". Astronomy and Astrophysics. 674:

 A41. arXiv:2206.05681. Bibcode:2023A&A...674A..41G. doi:10.1051/0004-6361/202243232. ISSN 0004-6361. Archived from the original on 19 May 2024. Retrieved 24 June 2025.
- 95. Bellm, Eric C.; Kulkarni, Shrinivas R.; Graham, Matthew J.; Dekany, Richard; Smith, Roger M.; Riddle, Reed; Masci, Frank J.; Helou, George; Prince, Thomas A.; Adams, Scott M.; Barbarino, C.; Barlow, Tom; Bauer, James; Beck, Ron; Belicki, Justin (December 2018). "The Zwicky Transient Facility: System Overview, Performance, and First Results". Publications of the Astronomical Society of the Pacific. 131 (995): 018002. doi:10.1088/1538-3873/aaecbe. ISSN 1538-3873.
- 96. <u>"Space Surveillance Telescope (SST)"</u>. www.darpa.mil. <u>Archived</u> from the original on 31 May 2025. Retrieved 23 June 2025.
- 97. Feder, Toni (2006). "Chilean Site Chosen for LSST". Physics Today. **59** (7): 23. <u>Bibcode</u>:2006PhT....59g..23F. <u>doi:10.1063/1.2337821</u>.
- 98. <u>"Site in Northern Chile Selected for Large Synoptic Survey Telescope"</u> (PDF) (Press release). LSST. 17 May 2006. <u>Archived</u> (PDF) from the original on 20 August 2018. Retrieved 13 May 2018.
- 99. <u>"COVID-19 Construction Shutdown"</u>. LSST. 14 April 2020. Archived from <u>the original</u> on 23 January 2021. Retrieved 23 May 2020.
- 100. <u>"Rubin Commissioning Camera Installed on the Telescope Mount"</u>. LSST. 30 August 2022. <u>Archived</u> from the original on 27 July 2023. Retrieved 27 July 2023.
- 101. <u>"Steward Observatory Mirror Lab Awarded Contract for Large Synoptic Survey Telescope Mirror"</u>. University of Arizona News. 29 October 2004. <u>Archived</u> from the original on 16 September 2021. Retrieved 10 September 2020.
- 102. "Mirror Fabrication | Rubin Observatory". www.lsst.org.
- 103. <u>"LSST High Fire Event"</u>. www.lsst.org. Archived from <u>the original</u> on 14 May 2008. Retrieved 3 September 2008.
- 104. <u>"Giant Furnace Opens to Reveal 'Perfect' LSST Mirror Blank"</u> (PDF). LSST Corporation. 2 September 2009. <u>Archived</u> (PDF) from the original on 20 August 2018. Retrieved 16 January 2011.
- 105. LSST.org (April 2015). "M1M3 Milestone Achieved". LSST E-News. **8** (1). Archived from the original on 8 August 2015. Retrieved 4 May 2015.
- 106. Sebag, Jacques; Gressler, William; Liang, Ming; Neill, Douglas; Araujo-Hauck, C.; Andrew, John; Angeli, G.; et al. (2016). <u>LSST primary/tertiary monolithic mirror</u>. Ground-based and Airborne Telescopes VI. Vol. 9906. International Society for Optics and Photonics. pp. 99063E. <u>Archived</u> from the original on 16 April 2018. Retrieved 15 April 2018.
- 107. Beal, Tom (28 February 2015). "Big mirror about to move from UA lab". Arizona Daily Star. Archived from the original on 18 June 2018. Retrieved 4 May 2015.
- 108. "News | Vera C. Rubin Observatory Project". project.lsst.org. Archived from the original on 6 December 2020. Retrieved 10 February 2019.

- 109. <u>"Bon Voyage (Buen Viaje) M1M3!"</u>. LSST. 13 March 2019. <u>Archived</u> from the original on 29 October 2020. Retrieved 3 May 2019.
- 110. <u>"M1M3 Sails for Chile"</u>. LSST. 11 April 2019. <u>Archived</u> from the original on 30 November 2020. Retrieved 3 May 2019.
- 111. "Rubin Observatory (@VRubinObs) on X".
- 112. <u>"Rubin Observatory Achieves Another Major Milestone: Reflective Coating of the 8.4-Meter Primary/Tertiary Mirror"</u>. 30 April 2024. <u>Archived</u> from the original on 3 January 2025. Retrieved 3 January 2025.
- 113. Victor Krabbendam; et al. (11 January 2011). "LSST Telescope and Optics Status" (PDF). American Astronomical Society 217th Meeting (poster). Seattle, Washington. Archived (PDF) from the original on 4 March 2016. Retrieved 5 August 2015. This updated plan shows the revised telescope centre at 6653188.0 N, 331859.1 E (PSAD56 datum). This is the same WGS84 location to the resolution shown.
- 114. "LSST M2 Substrate Complete and Shipped". LSST E-News. **2** (4). January 2010. Archived from the original on 4 March 2016. Retrieved 11 August 2015.
- 115. <u>"LSST M2 Substrate Received by Exelis"</u>. LSST E-News. **7** (4). December 2014. Archived from the original on 4 March 2016. Retrieved 7 December 2014.
- 116. "M2 Coating Completed". LSST. 30 July 2019. Archived from the original on 29 November 2020. Retrieved 19 November 2019.
- 117. <u>"Kaboom! Life's a Blast on Cerro Pachón"</u>. LSST Corporation. April 2011. <u>Archived</u> from the original on 23 August 2018. Retrieved 5 August 2015.
- 118. Krabbendam, Victor; et al. (9 January 2012). "Developments in Telescope and Site" (PDF). American Astronomical Society 219th Meeting (poster). Austin, Texas. Archived (PDF) from the original on 4 March 2016. Retrieved 16 January 2012.
- 119. <u>"Excavation Activities on Cerro Pachón"</u>. LSST E-News. **8** (2). August 2015. <u>Archived</u> from the original on 1 June 2016. Retrieved 21 April 2018.
- Barr, Jeffrey D.; Gressler, William; Sebag, Jacques; Seriche, Jaime; Serrano, Eduardo (2016). "LSST summit facility construction progress report: Reacting to design refinements and field conditions". In Hall, Helen J.; Gilmozzi, Roberto; Marshall, Heather K. (eds.). Ground-based and Airborne Telescopes VI. Vol. 9906.

 p. 99060P. <u>Bibcode</u>:2016SPIE.9906E.0PB. <u>doi:10.1117/12.2233383</u>. <u>ISBN 978-1-5106-0191-8</u>.
 <u>S2CID 125565259</u>. <u>Archived</u> from the original on 6 May 2018. Retrieved 6 May 2018.
 p. 12
- 121. <u>"A Key Event"</u>. 23 March 2018. <u>Archived</u> from the original on 18 October 2018. Retrieved 21 April 2018.
- 122. <u>"LSST Astronomy"</u>. 1 November 2019. Archived from <u>the original</u> on 1 January 2021.
- 123. Neill, Douglas R.; Krabbendam, Victor L. (2010). <u>LSST Telescope mount and pier design overview</u>. Ground-based and Airborne Telescopes III. Vol. 7733. International Society for Optics and Photonics. pp. 77330F. Bibcode:2010SPIE.7733E..0FN. doi:10.1117/12.857414.
- 124. Krabbendam, Victor L. (12 June 2018). <u>"The Large Synoptic Survey Telescope (LSST) Construction Status 2018"</u>. LSST. <u>Archived</u> from the original on 1 August 2018. Retrieved 1 August 2018.
- 125. <u>"LSST: TMA Contract Officially Signed"</u>. LSST E-News. **7** (4). December 2014. Archived from the original on 5 April 2016. Retrieved 15 May 2017.
- 126. "The TMA Arrives at the Summit". Vera Rubin Observatory. 24 September 2019.

- 127. <u>"TMA Achieves Substantial Completion"</u>. 18 April 2023. Archived from <u>the original</u> on 26 July 2023. Retrieved 26 July 2023.
- 128. <u>"LSST Camera Team Passes DOE CD-3 Review"</u>. 10 August 2015. <u>Archived</u> from the original on 4 March 2016. Retrieved 11 August 2015.
- 129. <u>"World's Most Powerful Digital Camera Sees Construction Green Light"</u> (Press release). SLAC. 31 August 2015. <u>Archived</u> from the original on 7 September 2018. Retrieved 1 September 2015.
- 130. Krabbendam, Victor L. (20 September 2018). <u>"The Large Synoptic Survey Telescope (LSST) Construction Status"</u> (PDF). LSST. Archived from <u>the original</u> (PDF) on 1 January 2021. Retrieved 3 May 2019.
- 131. <u>"LLNL engineers deliver final optical components for world's newest telescope: the Vera C. Rubin Observatory"</u>. 19 October 2021.
- 132. "Camera Cooldown". Rubin Observatory. 12 November 2021.
- 133. Haupt, J.; Kuczewski, J.; O'Connor, P. (24 November 2014). <u>"The Large Synoptic Survey Telescope Commissioning Camera"</u> (PDF). Brookhaven National Laboratory. Archived from <u>the original</u> (PDF) on 1 August 2016. (Archived Link added on 26 June 2025)
- 134. "2024-12-13 On-sky Commissioning Update". 13 December 2024.
- 135. Lea, Robert (3 April 2024). <u>"The world's largest digital camera is ready to investigate the dark universe"</u>. Space.com. <u>Archived</u> from the original on 5 April 2024. Retrieved 4 April 2024.
- 136. <u>"LSST Camera arrives at Rubin Observatory in Chile | symmetry magazine"</u>. www.symmetrymagazine.org. 22 May 2024. Retrieved 23 May 2024.
- 137. "NSF-DOE Vera C. Rubin Observatory Installs LSST Camera on Telescope | Rubin Observatory". rubinobservatory.org. 12 March 2025. Archived from the original on 22 May 2025. Retrieved 20 May 2025.
- 138. <u>"Rubin Observatory US Data Facility"</u> (PDF). April 2021. <u>Archived</u> (PDF) from the original on 6 December 2024. Retrieved 4 December 2024.
- 139. <u>"Lighting up the LSST Fiber Optic Network: From Summit to Base to Archive"</u>. LSST Project Office. 10 April 2018. Archived from <u>the original</u> on 3 August 2020. Retrieved 6 May 2018.
- 140. O'Mullane, William; Allbery, Russ; Lim, K. T. (9 July 2024). <u>"Rubin Data and Information Security Plan"</u> (PDF). Vera C. Rubin Observatory Rubin Observatory Operations. <u>Archived</u> (PDF) from the original on 4 December 2024. Retrieved 3 December 2024.
- 141. <u>"Amlight-Exp Activates two new 100 Gbps Points-of-Presence Enhancing Infrastructure for Research and Education"</u> (Press release). Florida International University. 29 March 2018. <u>Archived</u> from the original on 28 June 2018. Retrieved 6 May 2018.
- 142. <u>"Chile inaugura primer tramo de Red Óptica de alta velocidad"</u> [Chile inaugurates first stretch of High Speed Optical Network] (Press release) (in Spanish). Red Universitaria Nacional. 16 April 2018. Archived from the original on 24 April 2018. Retrieved 7 May 2018.
- 143. <u>"Brazilian scientists to partake in International Astronomy project"</u> (Press release). Rede Nacional de Ensino e Pesquisa. Archived from <u>the original</u> on 29 June 2018. Retrieved 8 May 2018.
- 144. Lu, Donna (19 November 2019). "SpaceX's Starlink satellites are interfering with astronomy again". New Scientist. Archived from the original on 4 May 2025. Retrieved 19 April 2025.

- 145. <u>"Astronomers Despair As SpaceX Starlink Train Ruins Observation Of Nearby</u> Galaxies". Forbes. 18 November 2019. Retrieved 19 April 2025.
- 146. <u>"China's 'Thousand Sails' joins Starlink as the latest mega-satellite constellation in orbit"</u>. Phys.org. 23 October 2024. <u>Archived</u> from the original on 21 May 2025. Retrieved 19 April 2025.
- 147. Boyle, Rebecca (1 February 2023). "Satellite Constellations Are an Existential Threat for Astronomy". Scientific American. Archived from the original on 23 May 2025. Retrieved 23 June 2025.
- 148. Hainaut, Olivier R.; Williams, Andrew P. (5 March 2020). "On the Impact of Satellite Constellations on Astronomical Observations with ESO telescopes in the Visible and Infrared Domains". Astronomy & Astrophysics. A121: 636. <u>arXiv:2003.01992</u>. <u>Bibcode:2020A&A...636A.121H</u>. <u>doi:10.1051/0004-6361/202037501</u>. ISSN 0004-6361. S2CID 211987992.
- 149. Tyson, J. Anthony (October 2020). "Mitigation of LEO Satellite Brightness and Trail Effects on the Rubin Observatory LSS". The Astronomical Journal. 160 (5): 226. arXiv:2006.12417. Bibcode:2020AJ....160..226T. doi:10.3847/1538-3881/abba3e.
- 150. Jinghan Alina Hu; Rawls, Meredith L.; Yoachim, Peter; Ivezić, Željko (2022). "Satellite Constellation Avoidance with the Rubin Observatory Legacy Survey of Space and Time". The Astrophysical Journal. **941** (1): L15. arXiv:2211.15908. Bibcode:2022ApJ...941L..15H. doi:10.3847/2041-8213/aca592.
- 151. Peter Yoachim (1 February 2025), <u>Isst-sims/smtn-018: Initial</u> <u>Release</u>, <u>doi:10.5281/zenodo.14783622</u>, retrieved 19 April 2025
- 152. <u>"The Cosmic Treasure Chest (Video-EN)"</u> (video). NSF–DOE Vera C. Rubin Observatory. 12 June 2025. Retrieved 25 June 2025.
- 153. <u>"Trifid and Lagoon Nebulae (Video-EN)"</u> (video). NSF–DOE Vera C. Rubin Observatory. 13 June 2025. Retrieved 29 June 2025.
- 154. <u>"Clear Skies at Cerro Pachón"</u>. noirlab.edu. <u>Archived</u> from the original on 17 June 2021. Retrieved 17 June 2021.
- 155. <u>"New Initiative to Help Unravel Cosmic Mysteries with Big</u>
 <u>Data"</u>. noirlab.edu. <u>Archived</u> from the original on 20 September 2021. Retrieved 20 September 2021.
- 156. <u>"The Rubin Observatory Telescope Mount Awakens"</u>. <u>Archived</u> from the original on 26 October 2021, Retrieved 26 October 2021.
- 157. <u>"Rubin Observatory Receives Two Guinness World Records for Its Camera and Lenses"</u>. <u>Archived</u> from the original on 26 October 2021. Retrieved 26 October 2021.
- 158. <u>"Final Filters Delivered for Rubin Observatory</u>
 <u>Camera"</u>. noirlab.edu. <u>Archived</u> from the original on 27 October 2021. Retrieved 26 October 2021.
- 159. <u>"Rubin Camera Chills Out"</u>. noirlab.edu. <u>Archived</u> from the original on 2 December 2021. Retrieved 2 December 2021.

Further reading

- <u>LSST Tutorials for Experimental Particle Physicists</u> A detailed explanation of Rubin Observatory's design (as of February 2006) and weak lensing science goals that does not assume much astronomy background
- LSST Science Collaborations; Abell, Paul A.; Allison, Julius; Anderson, Scott F.; Andrew, John R.; Angel, J. Roger P.; Armus, Lee; Arnett, David; Asztalos, S. J. (16 October 2009). <u>LSST Science</u> <u>Book, Version 2.0</u>. Vol. 0912. p. 201. <u>arXiv:0912.0201</u>. <u>Bibcode:2009arXiv0912.0201L</u>. Retrieved 16 January 2011. An updated and expanded overview.

External links

Wikimedia Commons has media related to Vera C. Rubin Observatory.

- Official website
- Legacy Survey of Space and Time official website
- Rubin Observatory construction site webcams
- HULIQ Google participation announcement
- 2025 introduction to the telescope by Scott Manley